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predictor-based subspace identification.

Alessandro Chiuso, Senior Member, IEEE

Abstract

There is experimental evidence that a recently proposed subspace algorithm based on predictor

identification, known also as “whitening filter algorithm”, has a behavior which is very close to prediction

error methods in certain simple examples; this observation raises a question concerning its optimality. It

is also known that time series identification using the Canonical Correlation Analysis (CCA) approach

is asymptotically efficient. Asymptotic optimality of CCA has also been proved when the measured

inputs are white. For these reasons CCA provides a natural benchmark against which other subspace

procedures should be compared. In this paper we study the relation between the standard CCA approach

and the recently proposed subspace procedure based on predictor identification (PBSID from now on).

Even though PBSID is consistent regardless of the presence of feedback, in this paper we work

under the assumption that there is no feedback to make the comparison with CCA meaningful; it is

shown that CCA and PBSID are asymptotically equivalent precisely in the situations when CCA is

optimal. The equivalence holds only asymptotically in the number of data and in the limit as the past

horizon goes to infinity. We also show that a slightly modified version of PBSID behaves no worse than

CCA also for non-white input signals.

The results of this paper imply that the “optimized” PBSID, besides being able to handle feedback,

is to be preferred to CCA when there is no feedback; only in very specific cases (white or no inputs)

the two algorithms are (asymptotically) equivalent.

I. INTRODUCTION

A certain number of subspace algorithms have been developed during the last two decades.

For time series identification, i.e. when there are no observed inputs, the algorithm developed
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by Larimore [33], [34], Van Overschee and De Moor [44] is known to provide asymptotically

efficient estimators1 [5]. Sometimes this algorithm goes under the name of CCA (or CVA)

to remind that the state construction is performed using Canonical Correlation Analysis [29],

as pioneered by Akaike [1], [2] and Desai and Pal [20]. The same ideas can be applied also

when there are measured inputs, provided the canonical correlation analysis between “past” and

“future” is performed “conditionally” on the future inputs [34], [32], [46]. It has become standard

in the area of subspace identification to use the acronym CCA (or sometimes CVA) for this class

of algorithms (with inputs [34], [39], [46], [32], [7], [4] or without inputs [33], [5]); we shall

henceforth use the same terminology (CCA) also in this paper.

Besides CCA, the most widely known procedures go under the acronyms N4SID [45], and

MOESP [47]. Recently several researchers have studied the asymptotic statistical properties

of these algorithms [3], [30], [6], [7], [4], [13], [15] and compared, to some extent, existing

procedures [7], [4], [14]. Also optimality of the CCA method when measured inputs are white

has been established in [7]. The situation is not clear when inputs are not white. The interested

reader is referred to the paper [7].

It is our opinion, as has already been stressed in [18], that some new ideas have been introduced

into the field by the study of subspace algorithms in the presence of feedback.

It is well-known in fact that standard procedures such as MOESP, N4SID, CCA, are not con-

sistent when data are collected in closed loop. Very recently two subspace procedures have been

introduced by Qin and Ljung (“innovation estimation algorithm”, [40]), and Jansson (SSARX,

[31]) which, to some extent, are able to deal with feedback. A related algorithm is discussed

also in [35]. The recent work [17] studies the statistical consistency of these two algorithms.

In [17] also a “geometrical” version of the SSARX algorithm proposed by Jansson [31] was

introduced and called “whitening-filter” algorithm.

This procedure forms the basis of our analysis and will be referred to as the “predictor-based

subspace identification” (“PBSID” for short) algorithm in this paper. We refer the reader to the

paper [18] for an explanation of this terminology; in [18] also the relation between classical

PEM and PBSID has been investigated and similarities pointed out. For reasons of space we

1Asymptotically both in the number of data and “past” and “future” horizons. The word “efficient” is always used assuming

Gaussian innovations in this paper.
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shall not discuss further this issue here.

It has also recently been proved (see [10]) that PBSID [17] and SSARX [31] are asymptotically

equivalent. This relation further motivates the analysis of this paper; the results contained in

[10] also suggest that there is a close connection between PBSID (and possibly its optimized

version presented here) and VARX (Vector AutoRegressive with eXogenous inputs) modeling.2

For reasons of space we shall have to postpone a more detailed analysis of this relation to future

work and refer the reader to the paper [10] for some preliminary results.

Experimental evidence shows that the behavior of PBSID/SSARX algorithm cannot be distin-

guished to any practical purpose from PEM in a number of simple examples; see the simulations

reported in [31], [17].

Using some recently derived formulas (see [11]) for the asymptotic variance of PBSID one

can verify that it is efficient in a number of examples when measured inputs are white. This

observation raises the question: is PBSID optimal and, if so, under which conditions?

We believe therefore that the relation of this procedure with more classical approaches is

worth studying; some preliminary results have been presented in the paper [9].

Most of the literature on the analysis of subspace methods (see [4] for a recent survey) has

concentrated on “open-loop’ procedures. It is well-known (see [5]) that the CCA algorithm

developed in [33], [44] is efficient for time series identification and optimal (see [5], [7]) for the

white input case. It is also conjectured, even though not yet formally proved, that indeed CCA is

efficient also for white inputs. It is therefore quite natural to compare new subspace algorithms

to CCA, which provides a sort of lower bound on the achievable accuracy in the situations

mentioned above by subspace procedures. Of course the comparison makes sense only in the

situations where the CCA algorithm is consistent, i.e. when there is no feedback. Therefore, even

though PBSID works regardless of the presence of feedback [17], [18], [31], in this paper we

shall work under the assumption that no feedback is present. See [25], [23], [17] for a formal

definition. The main contributions are as follows:

1) we show that PBSID is asymptotically3 equivalent to CCA in the time series case and also

when measured inputs are white (see Section IV and Theorem 4.1).

2As an anonymous reviewer was suggesting.
3Both in the number of data and in the length of the past horizon, see Section II for a precise definition.
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2) we introduce an “optimized version” of PBSID which performs no worse (in the sense

of asymptotic variance) than CCA regardless of the input spectrum (see Section V and

Theorem 5.3); the “optimized” PBSID can handle closed loop data as PBSID does.

The reason why equivalence does not hold with arbitrary input signals will be made clear

later on. Suffices it to say that standard procedures use “unnecessary” future input data in

the regression used to construct the basis for the state space, meaning that present outputs are

regressed both on past joint input-output and future inputs [45]; PBSID instead enforces causality

of the predictors (see formula (19)); state constructions advocating for causal predictors have

already been proposed in [39], [32], [40], [41]. In the white input case these “unnecessary future

input data” are uncorrelated with past input and output and present output and therefore do not

influence the statistical properties (as briefly discussed in [39], page 168).

These are, we believe, important steps in understanding “predictor based” subspace identi-

fication; the results imply that the PBSID algorithm is asymptotically optimal for time series

identification and for identification with white exogenous inputs and also that its “optimized

version” is always to be preferred to CCA. In addition, recall that both PBSID and its optimized

version have a much wider range of applicability than CCA, being able to deal with closed loop

data.

The question regarding optimality in more general cases remains open of course; simulation

results and computations based on the asymptotic variance expressions (see Section VI) suggest

that PBSID is a candidate for being efficient also for colored input. In the particular example

of this paper, the best (in terms of asymptotic variance) performance is reached, for colored

input, when the future horizon is chosen equal to the state dimension, departing sharply from

the behavior of CCA with white inputs (see [7]).

The structure of the paper is as follows; in Section II we introduce some basic notation. The

details of the two algorithms analyzed are reported in Section III while Section IV contains the

statement of the result regarding white (or absent) inputs. Section V contains the results for

general input signals; first the modified PBSID algorithm is presented and then its relation to

CCA is established in Theorem 5.3. Section VI contains some simulation results and in Section

VII we report some conclusions and discussion on future work. Part of the proofs are deferred

to the Appendix.
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II. BASIC NOTATION AND PRELIMINARIES

Let {y(t)}, {u(t)} be jointly (weakly) stationary second-order ergodic stochastic processes of

dimension m and p respectively, which are respectively the output and input signals of a linear

stochastic system in innovation form




x(t + 1) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) + e(t)
t ≥ t0. (1)

We assume that there is no feedback from {y(t)} to {u(t)} [25], [8], [23]. Without loss of

generality we shall assume that the dimension n of the state vector x(t) is as small as possible,

i.e. the representation (1) is minimal. For simplicity we assume that D = 0, i.e. there is no

direct feedthrough4 from u to y. This setup also encompasses time series identification (i.e. no

measured inputs) provided one lets B = 0, D = 0 in (1).

For future reference we define Ā := A − KC and let ρ := λmax(Ā) be an eigenvalue of

maximum modulus of Ā; we shall assume that both |ρ| and |λmax(A)| are strictly less than 1.

The white noise process e, the innovation of y given the joint past of y,u, is defined (see

formula (6)) as the one step ahead (linear) prediction error of y(t) given the joint (strict) past

of u and y up to time t.

The symbol I shall denote the identity matrix (of suitable dimension), A> shall denote the

transpose of the matrix A, ‖A‖2 shall be the 2-norm. For a symmetric positive semidefinite

matrix A = A> ≥ 0 the symbol A1/2 shall denote (slightly different from the standard notation)

any matrix such that A = A1/2(A1/2)>.

Our aim is to identify the system parameters (A,B,C, K), or equivalently the transfer func-

tions F (z) = C(zI − A)−1B and G(z) = C(zI − A)−1K + I , starting from input-output data

{ys, us}, s ∈ [t0, T + N ], generated by the system (1).

In this paper we are interested in assessing the quality, i.e. variance, of the subspace estimators;

therefore we shall have to deal with random fluctuations due to finite sample length (e.g.

approximating expectations with finite time averages, etc.). The analysis of this paper will

be concerned with asymptotic distribution and variance, i.e. quantification of these random

4This assumption can be removed in our situation but is useful when there is feedback, see [25], [8], [23], [17]. Since the

“predictor based” algorithm is designed to work without assumptions on the feedback structure we prefer to keep D = 0 also

here.
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fluctuations for “large samples”. Our concern is to show the link between CCA and “predictor

based” algorithm asymptotically as the number of data N goes to infinity.

We shall use the standard notation of boldface (lowercase) letters to denote random variables

(or semi-infinite tails). Lowercase letters denote sample values of a certain random variable.

For example we shall denote with y(t) the random vector denoting the output or equivalently

the semi-infinite tail [yt yt+1, . . . yt+k . . . ] where yt is the sample value of y(t). It can be

shown (see [37], [16]) that the Hilbert spaces of random variables of second order stationary

and ergodic process and the Hilbert space of semi-infinite tails containing sample values of the

same process are isometrically isomorphic and therefore random variables and semi-infinite tails

can be regarded as being the same object. For this reason we shall use the same symbol without

risk of confusion.

We shall instead use capitals to denote the tail of length N . For instance Yt := [yt yt+1, . . . yt+N−1],

Ut := [ut ut+1, . . . ut+N−1] and Zt := [Y >
t U>

t ]>. These are the block rows of the usual data

block Hankel matrices which appear in subspace identification.

Recall that, in order to deal with realistic algorithms which can only regress on a finite amount

of data, in subspace identification one usually keeps finite past and future horizons. This setting

we describe as using data from a finite observation interval. The analysis reported in this paper

requires that both N , the length of the finite tails5 and the past horizon t − t0
6 go to infinity.

We remind the reader that t− t0 has to go to infinity at a certain rate depending on the number

N of data available. Details can be found, for instance, in [7] where the following assumption

is made:

Assumption 2.1: The past horizon t− t0 goes to infinity with N while satisfying:

t− t0 ≥ logN−d/2

log|ρ| 1 < d < ∞
t− t0 = o (log(N)α) α < ∞

(2)

The first condition states that t−t0 goes to infinity “fast enough” as compared to the predictor

dynamics (eigenvalues of Ā), while the second ensures that it grows slower than logarithmically

(to some power α) in the number of data points. This assumption shall be made throughout.

The first condition, together with |ρ| < 1, implies that (A−KC)t−t0 = o(1/
√

N); therefore the

5This is the parameter j in the notation of Van Overschee and De Moor [45] i.e. the number of columns in the block Hankel

data matrices used in subspace identification.
6The number of block rows in the block Hankel data matrix containing the past data.
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difference between the stationary predictor (i.e. the predictor based on past data in (−∞, t)) and

its truncated version (i.e. using past data in a finite window [t0, t)) is o(1/
√

N) and therefore can

be neglected for the purpose of asymptotic analysis. Moreover, (2) ensures that, when regressing

onto past data and taking the limit as N goes to infinity, the computation of sample covariance

matrices of increasing size (with t− t0) does not pose any complication in the sense that their

limit is well defined and equal to the population counterpart (see the discussion after Lemma 4

in [7]).

For t0 ≤ t ≤ T we define the Hilbert space U[t0, t) of random (zero mean finite variance)

variables

U[t0, t) := span {uk(s); k = 1, . . . , p, t0 ≤ s < t }
Y[t0, t) := span {yk(s); k = 1, . . . , m, t0 ≤ s < t }

the bar denotes closure in mean square, i.e. in the metric defined by the inner product 〈 ξ, η 〉 :=

E{ξη} where E{·} denotes mathematical expectation. Closure is necessary since t0 might go to

−∞. These are the past spaces at time t of the processes u and y. Similarly, let U[t, T ], Y[t, T ] be

the future input and output spaces up to time T . The length T − t of the future will be denoted

with ν := T − t while we define ν̄ := ν − 1.

We define the joint future, Z[t, T ] := U[t, T ] ∨ Y[t, T ] and joint past Z[t0, t) := U[t0, t) ∨ Y[t0, t)

the ∨ denoting closed vector sum. By convention the past spaces do not include the present.

When t0 = −∞ we shall use the shorthands U−
t , Y−t for U(−∞, t), Y(−∞, t), and Z−t := U−

t ∨Y−t .

Subspaces spanned by random vectors at just one time instant (e.g. U[t, t ], etc) are simply denoted

Ut, etc. while for the spaces generated by u and y when t goes from −∞ to +∞ we shall use

the symbols U, Y, respectively.

With a slight abuse of notation, given a subspace A ⊆ U ∨ Y, we shall denote with E[· | A]

the orthogonal projection onto A, which coincides with conditional expectation in the Gaussian

case. Given two non-intersecting subspaces A ⊆ U ∨ Y, B ⊆ U ∨ Y, A ∩ B = {0}, E‖B[· | A]

shall denote the oblique projection onto A along B (see [24], [16]).

We adopt the notation Σab := E
[
ab>

]
to denote the covariance matrix between the zero

mean random vectors a and b. In the finite dimensional case the orthogonal projection of the

random vector a onto the space C := span{c} spanned by the vector c will be given, provided
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Σcc is invertible, by the usual formula

E[a|C] = ΣacΣ
−1
cc c.

Defining the projection errors ã := a − E[a|C] and b̃ := b − E[b|C], the symbol Σab|c will

denote projection error covariance (conditional covariance in the Gaussian case) Σab|c := Σãb̃ =

Σab − ΣacΣ
−1
cc Σcb. If we denote B := span{b}, C := span{c}, and assume that B ∩ C = {0},

the oblique projection E‖B [a|C] can be computed using the formula:

E‖B [a|C] = Σac|bΣ−1
cc|bc. (3)

We shall also use the notation: y[t,s] :=
[

y>(t) y>(t + 1) . . . y>(s)
]>

and the short-

hands y+ := y[t,T−1], and ū+ := u[t,T ].

Similarly the (finite) block Hankel data matrices will be denoted as Y[t,s] :=
[

Y >
t Y >

t+1 . . . Y >
s

]>

Sample covariances of finite sequences will be denoted with the same symbol used for the

corresponding random variables with a “hat” on top. For example, given finite sequences At :=

[at, at+1.., at+N−1] and Bt := [bt, bt+1.., bt+N−1] containing sample values of the processes {a(t)},

{b(t)}, we shall define

Σ̂ab =
1

N

N−1∑
i=0

at+ib
>
t+i =

AtB
>
t

N
.

Under our ergodic assumption lim
N→∞

Σ̂ab
a.s
= Σab.

Similarly, given a third sequence (say Ct := [ct, ct+1, .., ct+N−1]), Σ̂ab|c is defined as Σ̂ab|c :=

Σ̂ab − Σ̂acΣ̂
−1
cc Σ̂cb. Orthogonal and oblique projections on spaces of finite tails will be denoted

with the symbol Ê; e.g. Ê[·|U[t0,t)] will be the orthogonal projection on the space generated by

the rows of U[t0,t) and Ê‖U[t,T ]
[·|Z[t0,t)] will be the oblique projection along the space generated

by the rows of future inputs U[t,T ] onto the space generated by the rows of the joint past Z[t0,t)

[24]. As above, the oblique projection can be computed using the formula:

Ê‖Bt [At|Ct] = Σ̂ac|bΣ̂−1
cc|bCt. (4)

When projecting onto the space generated by the rows of two (or more) matrices, say Bt and

Ct we shall use the notation Ê [·|Bt, Ct]

All through this paper we shall assume that the joint process is “sufficiently rich”, in the sense

that Z[t0, T ] admits the direct sum decomposition

Z[t0, T ] = Z[t0, t) + Z[t, T ], t0 ≤ t ≤ T (5)
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the + sign denoting direct sum of subspaces. The symbol ⊕ will be reserved for orthogonal

direct sum. Various conditions ensuring sufficient richness are known. For example, it is well-

known that for a full-rank purely non deterministic (p.n.d.) process z to be sufficiently rich it

is necessary and sufficient that the determinant of the spectral density matrix Φz should have

no zeros on the unit circle [28]. Therefore, whenever needed, we shall make the following

assumption:

Assumption 2.2: The joint spectrum Φz is bounded and bounded away from zero on the unit

circle, i.e. ∃ 0 < c ≤ M < ∞ s.t.

cI ≤ Φz(e
jω) ≤ MI ∀ω ∈ [0, 2π)

Whenever necessary we shall assume that (5) holds also for finite sequences, i.e. that Z[t0,T ] is

of full row rank; note that this will hold almost surely for ergodic sequences once (5) is satisfied.

With the notation introduced above the innovation process e(t), i.e. the one step ahead (linear)

prediction error of y(t) based on the joint past Z−t is written in the form

e(t) := y(t)− E
[
y(t) | Z−t

]
. (6)

We shall use the symbol Et to denote the space generated by the components of e(t); we also

define Λ := Var {e(t)}.

Given a sequence of random vectors vN we say that
√

NvN is asymptotically normal if
√

NvN converges in law to a Gaussian random vector. The variance of the limiting distribution

is called asymptotic variance of
√

NvN . If the number of elements in the random vector vN

increases with N , we shall need a slight extension of the definition of asymptotic normality (see

[36]).

We shall say that
√

NvN is asymptotically normal if the random variable
√

Nη>NvN is

asymptotically normal for any column vector ηN (of suitable dimensions) satisfying Assumption

2.3 below:

Assumption 2.3: (i) ∃M < ∞ : ∀N η>NηN < M ; (ii) ∃ η ∈ `2 : limN→∞
∥∥[η>N 0]− η>

∥∥
2

=

0 and (iii) limN→∞Var (
√

Nη>NvN) = c < ∞.

With some abuse of terminology, we shall talk about asymptotic variance matrix also for

vectors of increasing size. For instance when we shall say that
√

NvN has asymptotic variance
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Σ∞, (with ‖Σ∞‖2 < ∞)7 we shall really mean that the asymptotic variance of
√

Nη>NvN is

η>Σ∞η. Similarly, given two asymptotically normal random vectors vN and wN , we shall say

that AsVar {√NvN} ≥ AsVar {√NwN} if, ∀ηN AsVar {√Nη>NvN} ≥ AsVar {√Nη>NwN}.

Convergence allows to deal with the expressions for N = ∞ rather than with the limit, as done

also in [7].

Given two sequences of random variables xN and gN , we shall say that xN = oP (gN) if,

∀δ > 0,

limN→∞P [| xN/gN |> δ] = 0

The notation xN = O(gN) means that the sequence xN/gN is bounded almost surely, i.e.

lim supN→∞xN/gN ≤M a.s.

for some 0 ≤ M < ∞. The symbol OP (·) has the same meaning in probability i.e. xN =

OP (gN), if, ∀ε, ∃M s.t.

supNP [| xN/gN |> M ] < ε

Similarly o(·) shall denote a.s. convergence to zero, i.e. xN = o(gN) means that

limN→∞xN/gN = 0 a.s.

If both xN and gN are deterministic sequences, say xN and gN , then xN = o(gN) has the

usual meaning

limN→∞xN/gN = 0.

The symbol ·
= shall denote equality up to oP (1/

√
N) terms, which we shall call asymptotic

equivalence. In fact, from standard results in asymptotic analysis (see for instance [21]) terms

which are oP (1/
√

N) can be neglected when studying the asymptotic statistical properties.

We shall use the notations oP (·), OP (·), o(·) or O(·) to denote random matrices (of suitable

dimensions possibly depending on N ) which elements are respectively oP (·), OP (·), o(·) or

O(·); (e.g., given random matrices V 1
N and V 2

N , the notation V 1
N = V 2

N + oP (1/
√

N) means that

the elements of V 1
N − V 2

N are oP (1/
√

N)).

7This shall be guaranteed by the fact that the elements of Σ∞ shall go to zero exponentially as a function of the difference

between row and column indexes.
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We shall also use the same symbol ( ·=) when the difference in the equated terms produces

nonsingular change of basis T̂N (up to oP (1/
√

N) and satisfying limN→∞ T̂N = I) in the

estimated state sequences. In fact also these differences may be discarded as far as estimation of

system invariants are concerned. For instance, if x1 and x2 are two candidate state variables, we

shall write x1
·
=x2 if there exists a non singular T̂N , with limN→∞ T̂N = I , so that x1− T̂Nx2 =

oP (1/
√

N).

Note also, for future reference, that if xN = O(fN) and yN = O(gN), then xNyN = o(hN)

provided fNgN = o(hN). Recall also that almost sure convergence implies convergence in

probability which, in particular, means that xN = o(1/
√

N) implies xN = oP (1/
√

N).

When dealing with tail matrices, e.g. At and Bt, containing the sample values at+i, bt+i,

i = 0, .., N − 1 of the random vectors a(t) and b(t), the notation At
·
=Bt really means that

a(t)
·
=b(t).

For future reference we also define the extended observability matrices

Γk :=




C

CA

CA2

...

CAk




, Γ̄k :=




C

CĀ

CĀ2

...

CĀk




(7)

and the Toeplitz matrices containing the Markov parameters of the “stochastic” part:

Hk =




I 0 . . . 0

CK I . . . 0
...

... . . . ...

CAk−1K CAk−2K . . . I




. (8)

Whenever needed we shall also make the following assumption on the innovation process e(t)

Assumption 2.4: Let F−
t be the σ-algebra generated by the random variables {y(s),−∞ <

s ≤ t} and {u(s),−∞ < s < ∞} (past outputs and past plus future inputs). The innovation

process e(t) is an F−
t−1-martingale difference sequence with constant conditional variance, i.e.

E[e(t)|F−
t−1] = 0

E[e(t)e>(t)|F−
t−1] = Λ.

(9)
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III. STATE SPACE CONSTRUCTION

It is well known [44], [45], [37], [16] that identification using subspace methods can be seen

as a two step procedure as follows:

1) Construct a basis X̂t for the state space via suitable projection operations on data sequences

(block Hankel data matrices).

2) Given (coherent) bases for the state space at time t (X̂t) and t + 1 (X̂t+1) solve




X̂t+1 ' AX̂t + BUt + KEt

Yt ' CX̂t + Et

(10)

in the least squares sense.

Different subspace algorithms have different implementations of the first step while the second

remains the same for virtually all algorithms which follow the so called “state” or “Larimore”

approach [4]; in this paper we shall not be concerned with algorithms based on the so-called

“shift invariance” (or MOESP-type) methods [4]. For this reason we compare algorithms on the

basis of step 1). We shall identify procedures which are (asymptotically) equivalent, modulo

change of basis, as the first step is concerned.

To make this statement precise, we report the following result which has been extensively

used in the literature on asymptotic analysis of subspace procedures [4], [13], [30]:

Proposition 3.1: Assume X̂1
t and X̂2

t are two candidate state sequences where

X̂1
t
·
=X̂2

t (11)

and assume a similar property holds also for the state at time t + 1. Then the least squares esti-

mators Â1, B̂1, Ĉ1, K̂1 and Â2, B̂2, Ĉ2, K̂2 of A,B, C,K obtained from (10) using respectively

X̂1
t (X̂1

t+1) and X̂2
t (X̂2

t+1) are asymptotically equivalent (modulo change of basis).

Proof: See Appendix A.

Remark III.1 We remind the reader that for t0 finite the estimation of the Kalman gain K

involves the solution of a Riccati Equation. See for instance [44], [45], [37]. The situation is

different here since t0 is let going to −∞ according to Assumption 2.1 ♦

In this Section we shall review the state construction step for the CCA algorithm [33], [7]

and for the PBSID algorithm [31], [17].
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A. CCA Algorithm

The basic object which allows to construct a basis for the state space is the “oblique predictor”

Ŷ[t,T−1] = Ê‖U[t,T ]

[
Y[t,T−1] | Z[t0,t)

]
=

= Γν̄Ê‖U[t,T ]

[
Xt | Z[t0,t)

]
+ Hν̄Ê‖U[t,T ]

[
E[t,T−1] | Z[t0,t)

]

' Γν̄Xt.

(12)

The approximate equality has to be understood in the sense that, asymptotically in N

ŷ[t,T−1] = E‖U[t,T ]

[
y[t,T−1] | Z−t

]
= Γν̄x(t) (13)

holds. The matrix Ŷ[t,T−1] has full row rank for finite N .

The reduction to rank n, the system order, is implemented via the weighted singular value

decomposition
Ŵ−1

CCAŶ[t,T−1] = USV >

= [Un Ũn]


 Sn 0

0 S̃n





 V >

n

Ṽ >
n


 (14)

The CCA algorithm corresponds to the choice 8

ŴCCA := Σ̂
1/2

y+y+|ū+ . (15)

An estimate of the observability matrix is obtained discarding the “less significant” singular

values (i.e. pretending S̃n ' 0) from9

Γ̂ν̄ = ŴCCAUnT̂ (16)

where T̂ can be any non-singular matrix providing a choice of basis. We acknowledge that

the presence of the matrix T̂ may appear non-standard. Standard procedures correspond to the

choices T̂ = I or T̂ = S
1/2
n . It is useful in the analysis reported in this paper to make a specific

choice of T̂ which shall guarantee that the estimated system matrices converge regardless of the

8The reader may argue that this procedure differs from the original CCA by the choice of a “right” weight. We remind

that this “right weight” has no influence on the asymptotic accuracy of the estimates using the so called “state approach”, i.e.

implementing step 2) above. See for instance [7], [13].
9We do not discuss order estimation in this paper. We shall always assume that the correct order is selected.
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possible ambiguities, due to orientation of singular vectors and multiple singular values (if any),

in the SVD (14). To this purpose we propose to use

T̂ := U>
n Ŵ−1

CCAΓν̄ (17)

where Γν̄ is the “true” (but unknown) observability matrix. The reader may argue that such

choice is infeasible in practice; we stress however that such T̂ serves only for the purpose of

asymptotic analysis and need not be known when implementing the algorithm. In fact, for a

fixed data size N , the choice of T̂ influences only the basis in which the system matrices are

estimated and hence does not affect any system invariant; the choices T̂ = I or T̂ = S
1/2
n are

usually made as mentioned above.

Lemma 3.2: The estimator Γ̂ν̄ in (16), with the choice of T̂ in (17) converges a.s. to Γν̄ as

N →∞.

Proof: See Appendix A.

Defining the left inverse Γ̂−L
ν̄ :=

(
Γ̂>ν̄ Ŵ−>

CCAŴ−1
CCAΓ̂ν̄

)−1

Γ̂>ν̄ Ŵ−>
CCAŴ−1

CCA a basis for the state

space is constructed from:

X̂CCA
t := Γ̂−L

ν̄ Ŷ[t,T−1]

X̂CCA
t+1 := Γ̂−L

ν̄ Ê‖U[t+1,T ]

[
Y[t+1,T ] | Z[t0,t+1)

] (18)

These formulas for constructing the state space at time t and t+1 are discussed and motivated,

for instance, in [13], pp. 276-277.

Remark III.2 We remind that all weighting matrices are in practice data dependent. However,

for the purpose of asymptotic analysis, data dependent weights (say ŴCCA) can be substituted

with their (a.s.) limit (say WCCA), as discussed for instance in [6], [7], [4], [13].

Therefore, to streamline notation, we prefer to work directly with the population version of

all weights. ♦

We quote now a result which first appeared in [7] which shows that the CCA weight WCCA =

Σ
1/2

y+y+|ū+ can be substituted with [Hν̄(I⊗Λ)H>
ν̄ ]1/2 without changing the asymptotic properties.

For completeness we give a proof of this result in Appendix A.

Lemma 3.3: (Bauer-Ljung [7]) Assume the parameters are estimated following steps 1) and

2) above and the state is constructed according to (18). Then any choice WCCA = [Hν̄(I ⊗
Λ)H>

ν̄ + Γν̄ΣΓ>ν̄ ]1/2 with Σ = Σ> ≥ 0, provides the same asymptotic accuracy of the estimators

of any system invariant.
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Proof: See Appendix A.

This fact will be useful later on to study the relation between CCA and predictor-based

subspace identification.

Remark III.3 With some abuse of notation we can denote with X̂CCA
t any state sequence

resulting from a choice of WCCA of the form WCCA = [Hν̄(I ⊗ Λ)H>
ν̄ + Γν̄ΣΓ>ν̄ ]1/2 for some

Σ = Σ> ≥ 0. Lemma 3.3 ensures that these state sequences are asymptotically equivalent as

far as estimation of system invariants is concerned, but may differ for a nonsingular change of

basis of course. From now on we shall always use WCCA := Hν̄(I ⊗ Λ1/2). ♦

B. PBSID algorithm

This algorithm inherits its name from the similarity with PE methods and from the fact that it

is based on identification of the predictor model. As mentioned in the introduction, this algorithm

was introduced in [17], inspired by [31], under the name “whitening filter algorithm”. For reasons

of space we shall refer the interested reader to the paper [18] for further comments regarding

the relation between PBSID and PEM.

The construction of the state space using this algorithm is slightly more complicated and

involves several oblique projections. First of all one computes the oblique projections10

Ŷ p
t+h := Ê‖Z[t,t+h)

[
Yt+h | Z[t0,t)

]

' CĀh−1Xt

h = 0, 1, .., ν̄.

(19)

Also here the last approximate equality has to be understood in the sense that, asymptotically

in N ,
ŷp(t + h) := E‖Z[t,t+h)

[
y(t + h) | Z−t

]
= CĀh−1x(t)

h = 0, 1, .., ν̄
(20)

holds.

10The superscript p reminds that the quantity has to do with the “predictor-based” algorithm.
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Then one stacks all the predictors

Ŷ p
[t,T−1] :=




Ŷ p
t

Ŷ p
t+1

...

Ŷ p
T−1



' Γ̄ν̄Xt.

From the weighted Singular Value Decomposition11

W−1Ŷ p
[t,T−1] = PDQ> = [PnP̃n]


 Dn 0

0 D̃n




[
Q>

n Q̃>
n

]
(21)

an estimate of the observability matrix Γ̄ν̄ is obtained discarding the “less significant” singular

values (i.e. pretending D̃n ' 0) from

ˆ̄Γν̄ = WPn
ˆ̄T (22)

where ˆ̄T can be any non-singular matrix providing a choice of basis.

As done in the previous section, for the purpose of analysis we shall make the specific choice

ˆ̄T := P>
n W−1Γ̄ν̄ (23)

where Γ̄ν̄ is the “true” (but unknown) observability matrix.

Lemma 3.4: The estimator ˆ̄Γν̄ in (22), with the choice of ˆ̄T in (23) converges a.s. to Γ̄ν̄ as

N →∞.

Proof: It is analogous to the proof of Lemma 3.2 and shall be omitted.

Defining the left inverse ˆ̄Γ−L
ν̄ :=

(
ˆ̄Γ>ν̄ W−>W−1 ˆ̄Γν̄

)−1 ˆ̄Γ>ν̄ W−>W−1 a basis for the state space

is given by
X̂PBSID

t := ˆ̄Γ−L
ν̄ Ŷ p

[t,T−1]

X̂PBSID
t+1 := ˆ̄Γ−L

ν̄




Ê
[
Yt+1 | Z[t0,t+1)

]

Ê‖Zt+1

[
Yt+2 | Z[t0,t+1)

]
...

Ê‖Z[t,T )

[
YT | Z[t0,t+1)

]




(24)

11We introduce a weighting matrix W which will be chosen appropriately.
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IV. WHITE INPUTS

In this section we shall study the link between the state constructions (18) and (24) under

the assumption that the input signal is a white noise process (or it is absent). We leave the

analysis of the general case to the next Section; since we shall need to introduce a modified

PBSID algorithm to perform the comparison in that case we prefer to keep well separated the

two situations and deal first with the standard algorithm.

We now state the main result of this section:

Theorem 4.1: Let Λ denote the innovation noise covariance. Under the conditions stated in

Assumption 2.1, assuming that inputs are white or absent and provided W is chosen according

to W = I ⊗ Λ1/2 and WCCA = Hν̄(I ⊗ Λ1/2), the state constructions in (18) and (24) satisfy

X̂PBSID
t

·
=X̂CCA

t

and therefore yield asymptotically the same accuracy as far as estimation of any system invariant

is concerned.

The proof of this Theorem relies on an intermediate result which we state in the form of a

Lemma:

Lemma 4.2: If u(t) is absent or white the oblique predictor Ŷt+h := Ê‖U[t,T ]

[
Yt+h | Z[t0,t)

]

satisfies:

Ŷt+h
·
=Ŷ p

t+h +
h∑

i=1

Φ̂hiŶt+h−i (25)

for suitable matrix coefficients Φ̂ij satisfying limN→∞Φ̂ij = Φi,j = CĀi−1K. This relation can

be written in compact form as

Ŷ p
[t,T−1]

·
=




I 0 . . . 0

−Φ̂11 I . . . 0
...

... . . . ...

−Φ̂ν̄−1,ν̄−1 −Φ̂ν̄−1,ν̄−2 . . . I




Ŷ[t,T−1] (26)

The lower triangular matrix in formula (26) converges to a block Toeplitz matrix which is the

inverse of Hν̄ defined in (8), i.e.

lim
N→∞

Ĥ−1
ν̄ = H−1

ν̄ .
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Then we shall write (26) as

Ŷ p
[t,T−1]

·
=H−1

ν̄ Ŷ[t,T−1] (27)

Proof: See Appendix A.

Remind that (27) should be understood in the sense that the left and right hand side give rise

to state sequences which differ, up to oP (1/
√

N) terms, only for a non-singular change of basis

T̂N converging to the identity matrix as N grows to infinity. We shall use the same notation

without further notice in the rest of the paper. This is well known in the literature of subspace

identification and corresponds to the fact that sample dependent weights can be substituted with

their a.s. limit without changing the asymptotic properties of any system invariant (see e.g. [4],

Theorem 7).

Proof of Theorem 4.1.

We recall from (21) that in the predictor-based algorithm one takes the SVD of W−1Ŷ p
[t,T−1]

while, from (14), W−1
CCAŶ[t,T−1] is used in the CCA algorithm.

Note that, the CCA algorithm corresponds to the choice

WCCA = Σ
1/2

y+y+|ū+ = (Γν̄Σxx|ū+Γ>ν̄ + Hν̄(I ⊗ Λ)H>
ν̄ )1/2

where Λ is the variance of the innovation.

However, by letting Σ = 0 in Lemma 3.3, WCCA = (Hν̄(I ⊗ Λ)H>
ν̄ )1/2 provides the same

asymptotic behavior.

If we now pre-multiply both sides of (27) after Lemma 4.2 by W−1/2 = (I⊗Λ)−1/2 we obtain

that

W−1/2Ŷ p
[t,T−1]

·
=(I ⊗ Λ)−1/2H−1

ν̄ Ŷ[t,T−1] = W−1
CCAŶ[t,T−1]. (28)

As described in Section III the right hand side is used in CCA while the left hand side in PBSID.

This means that the matrices of which one computes SVD are asymptotically equivalent for the

two algorithms. As a consequence also the estimated state sequences X̂CCA
t and X̂PBSID

t are

asymptotically equivalent, which using Proposition 3.1 concludes the proof. ¥

V. NON-WHITE INPUTS

In this section we shall address the case when measured inputs are not white. Unfortunately

it seems not possible to compare CCA with PBSID in the form presented in Section III. We
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shall need to consider an “optimized” version of PBSID, which we shall call PBSIDopt. We shall

explain the details later in this section.

We shall show that in this case the variance of the estimators obtained using CCA is greater

than or equal to the variance of the estimators obtained using PBSIDopt.

First we shall explain the reasons for modifying the PBSID algorithm and then use these

arguments to show that indeed PBSIDopt performs no worse than CCA.

Defining K :=
[
Āt−t0−1[K B] Āt−t0−2[K B] . . . [K B]

]
the output tail Yt+h can be written

as:

Yt+h = CĀhXt +
∑h

i=1 CĀi−1 (KYt+h−i + BUt+h−i) + Et+h

= CĀhKZ[t0,t) +
∑h

i=1 CĀi−1 (KYt+h−i + BUt+h−i) + Et+h + oP (1/
√

N)

:= ΞhZ[t0,t) +
∑h

i=1 ΦhiYt+h−i + ΨhiUt+h−i + Et+h + oP (1/
√

N)

(29)

where, thanks to Assumption 2.1, the oP (1/
√

N) term accounts for mishandling of the initial

condition and Ξh := CĀhK, Φhi := CĀi−1K, Ψhi := CĀi−1B. The parameters Φhi and Ψhi do

not depend on h, but this notation shall be useful in the sequel.

The state construction for CCA and PBSID are based on the oblique projections (12) and

(19); we shall make use of the relations

Ŷt+h = Ê‖U[t,T ]

[
Yt+h | Z[t0,t)

]
= Ê‖U[t,T ]

[
Ê

[
Yt+h | Z[t0,t+h), U[t+h,T ]

] | Z[t0,t)

]
(30)

and

Ŷ p
t+h = Ê‖Z[t,t+h)

[
Yt+h | Z[t0,t)

]
= Ê‖Z[t,t+h)

[
Ê

[
Yt+h | Z[t0,t+h)

] | Z[t0,t)

]
. (31)

A. Optimized PBSID Algorithm

Stacking the data and using (29) (discarding12 oP (1/
√

N) terms) we obtain:



Yt

Yt+1

...

YT




·
=




Ξ0

Ξ1

...

Ξν




Z[t0,t)+




0 0 . . . 0

Φ11 0 . . . 0
...

... . . . ...

Φνν . . . Φν1 0




Y[t,T ]+




0 0 . . . 0

Ψ11 0 . . . 0
...

... . . . ...

Ψνν . . . Ψν1 0




U[t,T ]+




Et

Et+1

...

ET




(32)

Observe that the lower triangular matrices in (32) are Toeplitz, since Φij = CĀj−1K, Ψij =

CĀj−1B, ∀i, j. The inner projection in (31) is equivalent to solving (32) “row by row”; hence

12See Appendix B for a formal justification.
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the Toeplitz structure is not preserved after estimation, i.e. Φ̂ij 6= Φ̂i′j , Ψ̂ij 6= Ψ̂i′j , almost surely

when i 6= i′.

This is equivalent to solving the least squares problem obtained vectorizing (32):

Y :=




vec (Yt)

vec (Yt+1)
...

vec (YT )




·
=SP ΩP +




vec (Et)

vec (Et+1)
...

vec (ET )




= SP ΩP + E (33)

where the matrix SP has the form

SP =




(Z>
[t0,t) ⊗ I) 0 . . . 0

0 (Z>
[t0,t+1) ⊗ I) . . . 0

...
... . . . ...

0 0 . . . (Z>
[t0,T ) ⊗ I)




(34)

and ΩP is given by

ΩP =
[
vec> (Ξ0) vec> (Ξ1) vec> (Φ11) vec> (Ψ11) . . . vec> (Ξν) . . . vec> (Ψν1)

]>
;

(35)

note that the “noise term” E can be written in the form

E =




1 . . . 0 0 . . . 0
... . . . ...

...
...

...

0 . . . 1 0 . . . 0

0 1 . . . 0 . . . 0
...

... . . . ...
...

...

0 0 . . . 1 . . . 0

0 0 1 . . . . . . 0
...

...
...

...
...

...

0 0 . . . 0 . . . 1







et

et+1

...

et+N−1

et+N

...

eT+N−1




=: LEI (36)

where the last equality defines the Nmν̄× (N + ν̄)m matrix L and the vector EI . Equation (36)

shows that indeed E has a singular covariance matrix R = Var {E} = L (I ⊗ Λ) L>.

September 27, 2006 DRAFT



21

This structure can be used to form an estimator Ω̂Popt of ΩP which has the smallest asymptotic

variance among all linear (asymptotically unbiased) estimators based on (33). Being the noise

covariance R singular and the regression matrix SP of full rank, Ω̂Popt can be obtained as

described in [43][Complement C.4.3]. However, it is possible to reduce (33) to a smaller least

squares problem with full rank noise and equality constraints (see [42], [48], [43], [24] just to

cite a few references). We refer the reader to Appendix B for further details. Note however

that this just a matter of computational cost, which is of course fundamental when it comes to

implementing algorithms, but does not influence the results of this paper. In the present imple-

mentation the “optimized” algorithm has a computational complexity which is O(N2(log(N))β)

while the original PBSID algorithm as well as CCA have a computational complexity which

is O(N(log(N))2β), where β is the rate at which the past horizon t − t0 grows with N (i.e.

t− t0 = O((log(N))β), see Assumption 2.1). Of course this rough evaluation does not take into

account constants which may strongly influence the computation time. For instance the dimension

of input and output signals as well as the length of the future horizon play an important role.

As an anonymous reviewer has suggested, both PBSID and its optimized version have strong

similarities with VARX identification. We acknowledge that this is worth investigating; exploiting

these similarities might also be advantageous for computational reasons. Indeed some work along

these lines has already been done in [10], where the relation between PBSID and SSARX (which

uses VARX modeling) has been studied and in [12], where the relation between PBSIDopt and

VARX modeling have been elucidated. However entering into the fine structure of the constrained

least squares problem (33) would require far more space than available here and therefore we

refer the reader to the references above.

We shall use the notation Ξ̂
Popt

h , Φ̂
Popt

ij for the estimators of Ξh, Φij extracted from the

components of Ω̂Popt .

Using the estimator Ω̂Popt , the oblique projections Ŷ p
t+h can be substituted with Ŷ

Popt

t+h =

Ξ̂
Popt

h Z[t0,t) in the SVD step (21) and an estimator for the state be given by

X̂
Popt

t :=
(

ˆ̄Γ
Popt

ν̄

)−L




Ŷ
Popt

t

Ŷ
Popt

t+1

...

Ŷ
Popt

T−1




. (37)
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Also the “shifted” oblique projections used for the computation of the state at time t + 1 (see

(24)) can be substituted by

X̂
Popt

t+1 :=
(

ˆ̄Γ
Popt

ν̄

)




Ξ̂
Popt

1 Φ̂
Popt

11 Ψ̂
Popt

11

Ξ̂
Popt

2 Φ̂
Popt

22 Ψ̂
Popt

22

...

Ξ̂
Popt
ν Φ̂

Popt
νν Ψ̂

Popt
νν




Z[t0,t+1).

Similarly an estimator of the innovation sequence Et can be found by

Ê
Popt

t := Yt − E
[
Ŷ

Popt

t |X̂Popt

t

]
= Yt − Ĉ

Popt

N X̂
Popt

t (38)

Proposition 5.1: Let the estimators Â
Popt

N , B̂
Popt

N , Ĉ
Popt

N , K̂
Popt

N be obtained solving




X̂
Popt

t+1 ' AX̂
Popt

t + BUt + KÊ
Popt

t

Ŷ
Popt

t ' CX̂
Popt

t

in the least squares sense.

Let also (A
Popt

N , B
Popt

N , C
Popt

N , K
Popt

N ) denote the “true” system matrices expressed in the basis

corresponding to

T̄
Popt

N :=
(

ˆ̄Γ
Popt

ν̄

)−L

Γ̄ν̄

i.e. A
Popt

N := T̄
Popt

N A
(
T̄

Popt

N

)−1

etc.

Then, with the choice of ˆ̄T in (23), T̄
Popt

N converges to the identity matrix and the errors

Ã
Popt

N = Â
Popt

N − A
Popt

N , B̃
Popt

N = B̂
Popt

N − B
Popt

N , C̃
Popt

N = Ĉ
Popt

N − C
Popt

N , K̃
Popt

N = K̂
Popt

N − K
Popt

N

satisfy: 


vec
(
Ã

Popt

N

)

vec
(
B̃

Popt

N

)

vec
(
C̃

Popt

N

)

vec
(
K̃

Popt

N

)




·
=MP

(
Ω̂Popt − ΩP

)
(39)

for a suitably defined matrix MP with rows in `2.

Proof: See Appendix A.
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B. CCA algorithm revisited

We now move to the CCA algorithm and study its relation to the procedure just described. To

make the comparison easier, we rephrase the CCA algorithm using the least-square formulation

analogous to (32) and (33).

Using (29) and discarding oP (1/
√

N) terms13, the inner projection in (30) can be computed

solving in the least squares sense:



Yt

Yt+1

...

YT




·
=




Ξ0

Ξ1

...

Ξν




Z[t0,t)+




0 0 . . . 0

Φ11 0 . . . 0
...

... . . . ...

Φνν . . . Φν1 0




Y[t,T ]+




∗ ∗ . . . ∗
Ψ11 ∗ . . . ∗

...
... . . . ...

Ψνν . . . Ψν1 ∗




U[t,T ]+




Et

Et+1

...

ET




(40)

where the ∗’s denote parameters which are estimated but which value has no interest (and

actually should be equal to zero). Since each row is parameterized independently the orthogonal

projections Ê
[
Yt+h | Z[t0,t+h), U[t+h,T ]

]
, for h = 0, .., ν, are equivalent to solving the least squares

problem obtained by vectorizing (40)




vec (Yt)

vec (Yt+1)
...

vec (YT )




·
=SCCAΩCCA +




vec (Et)

vec (Et+1)
...

vec (ET )




= SCCAΩCCA + E (41)

where the matrices ΩCCA and SCCA have the form

ΩCCA =


ΩP

∗


 SCCA =

[
SP ∗

]
; (42)

the terms denoted with ∗ contain the vectorization of all the ∗’s in (40).

As we have just stressed the inner projection in (30) is equivalent to solving (41) in the least

squares sense (with no weighting). We shall denote with Ω̂CCA the corresponding estimator of

ΩCCA and with Ω̂PCCA , Ξ̂CCA
k , Φ̂CCA

ij , Ψ̂CCA
ij the estimators of ΩP , Ξk, Φij , Ψij extracted from

its components.

13See Appendix B for a formal justification.
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With this observation the oblique projections (30) are written in the from:

Ŷt+h = Ξ̂CCA
h Z[t0,t) +

h∑
i=1

Φ̂CCA
hi Ŷt+h−i (43)

With the same argument used in the proof of Lemma 4.2 we obtain that

W−1
CCAŶ[t,T−1]

·
=(I ⊗ Λ−1/2)




Ξ̂CCA
0

...

Ξ̂CCA
ν̄


 Z[t0,t) (44)

and

W−1
CCAÊ‖U[t+1,T ]

[
Y[t+1,T ] | Z[t0,t+1)

] ·
=(I ⊗ Λ−1/2)




Ξ̂CCA
1 Φ̂CCA

11 Ψ̂CCA
11

Ξ̂CCA
2 Φ̂CCA

22 Ψ̂CCA
22

...

Ξ̂CCA
ν Φ̂CCA

νν Ψ̂CCA
νν




Z[t0,t+1) (45)

The state sequences X̂CCA
t , X̂CCA

t+1 are constructed as described in Section III. Substituting the

right hand sides of (44) and (45) in the CCA algorithm does not change its asymptotic properties

as stated in Lemma 3.1.

The estimator for the innovation sequence is taken here of the form:

ÊCCA
t := Yt − Ê

[
Yt | X̂CCA

t

]
= Yt − ĈCCA

N X̂CCA
t (46)

Proposition 5.2: Let the estimators ÂCCA
N , B̂CCA

N , ĈCCA
N , K̂CCA

N be obtained solving




X̂CCA
t+1 ' AX̂CCA

t + BUt + KÊCCA
t

Ŷt ' CX̂CCA
t

in the least squares sense.

Let also (ACCA
N , BCCA

N , CCCA
N , KCCA

N ) denote the “true” system matrices expressed in the basis

corresponding to

TCCA
N := Γ̂−L

ν̄ Γν̄ (47)

i.e. ACCA
N := TCCA

N A
(
TCCA

N

)−1 etc.
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Then, with the choice of T̂ in (17), TCCA
N converges to the identity matrix and the errors

ÃCCA
N = ÂCCA

N − ACCA
N , B̃CCA

N = B̂CCA
N − BCCA

N , C̃CCA
N = ĈCCA

N − CCCA
N , K̃CCA

N = K̂CCA
N −

KCCA
N satisfy:




vec
(
ÃCCA

N

)

vec
(
B̃CCA

N

)

vec
(
C̃CCA

N

)

vec
(
K̃CCA

N

)




·
=MP

(
Ω̂Popt − ΩP

)
+MCCA

1

(
Ω̂PCCA − Ω̂Popt

)
+MCCA

2 vec
(
Ξ̂0 − Ξ̂

Popt

0

)
(48)

where Ξ̂0 is defined in (A.67). The matrix MP is the same which appears in equation (39) while

MCCA
1 and MCCA

2 are suitably defined matrices with rows in `2.

Proof: See Appendix A.

C. Comparison between CCA and PBSIDopt

The optimized version of PBSID introduced above can now be easily compared to the standard

CCA algorithm without making assumptions on the input spectrum (besides of course persistency

of excitation conditions and absence of feedback). We first state the main result as a Theorem;

the remaining part of this Section shall be devoted to the proof.

Theorem 5.3: Let Θ be any system invariant which depends differentiably on the system ma-

trices (A,B, C, D). Denote with Θ̂CCA and Θ̂Popt the estimators of any such Θ using respectively

CCA and PBSIDopt; then,

AsVar {
√

NΘ̂CCA} ≥ AsVar {
√

NΘ̂Popt}. (49)

Proof:

As seen above in formulas (41) and (33), the first step of the algorithms can be seen as a

linear least squares problem; there are, however, three “complications” which make the analysis

more difficult:

1) the effect of the initial condition (the oP (1/
√

N) terms);

2) the regression matrices SP and SCCA are data dependent;

3) the dimension of the parameter vector ΩP grows with the sample size.

We shall deal with problems, respectively, as follows:
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1) We shall see in Appendix B, (see Lemma 7.1 and the discussion following the Lemma)

that the oP (1/
√

N) terms which have been omitted in (33) have a special form which

allows, indeed, to neglect them.

2) Under Assumption 2.4, it is tedious but easy to adapt standard properties of Markov

estimators (i.e. unbiasedness and minimum variance; see for instance [43][Lemma 4.3,

Proof A]) to the case in which the regression matrix (SP , SCCA) is “data dependent”. Of

course unbiasedness and minimum variance hold only asymptotically.

3) We shall follow the approach of [36], studying the (scalar) estimators η>N Ω̂P with ηN

satisfying Assumption 2.3.

As discussed in Appendix B, the estimators Ω̂PCCA and Ω̂Popt , satisfy the inequality:

AsVar {
√

Nη>N Ω̂PCCA} ≥ AsVar {
√

Nη>N Ω̂Popt} (50)

∀ ηN satisfying Assumption 2.3. In particular, being Ω̃Popt := Ω̂Popt − ΩP the “optimal”

estimation error, Ω̃PCCA := Ω̂PCCA − ΩP can also be written as

√
NΩ̃PCCA =

√
NΩ̃Popt +

√
N(Ω̂PCCA − Ω̂Popt) (51)

where the two terms on the right hand side are asymptotically uncorrelated, i.e.

AsCov{
√

Nη>N Ω̃Popt ,
√

Nγ>N(Ω̂PCCA − Ω̂Popt)} = 0

∀ ηN , γN satisfying Assumption 2.3.

The reason for this inequality is twofold:

1) in (41) the parameters denoted with ∗’s are estimated even though they are known to

be zero (observe that instead in (32), (33) the lower triangular structure of the matrix

describing the link from future input to future output is enforced)

2) the modified PBSID algorithm solves (33) in an optimal fashion

Furthermore, a similar decomposition holds also for Ξ̂0, i.e. Ξ̃0 := Ξ̂0 − Ξ0 can be written as

√
N

(
Ξ̃0

)
=
√

N
(
Ξ̂

Popt

0 − Ξ0

)
+
√

N(Ξ̂0 − Ξ̂
Popt

0 ) =
√

N Ξ̃
Popt

0 +
√

N(Ξ̂0 − Ξ̂
Popt

0 ) (52)

where
√

Nη>Nvec(Ξ̂0−Ξ̂
Popt

0 ) is (asymptotically) uncorrelated from
√

Nγ>N Ω̃Popt =
√

Nγ>N
(
Ω̂Popt − ΩP

)

∀ ηN , γN satisfying Assumption 2.3.
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These last observations imply that (
√

N times) the last two terms on the right hand side of

(48) are asymptotically uncorrelated with (
√

N times) the first. Therefore, from equations (39)

and (48),

AsVar





√
N




vec
(
ÃCCA

N

)

vec
(
B̃CCA

N

)

vec
(
C̃CCA

N

)

vec
(
K̃CCA

N

)








= AsVar





√
N




vec
(
Ã

Popt

N

)

vec
(
B̃

Popt

N

)

vec
(
C̃

Popt

N

)

vec
(
K̃

Popt

N

)








+

+ AsVar




√

N
[
MCCA

1 MCCA
2

]



(
Ω̂PCCA − Ω̂Popt

)

vec
(
Ξ̂0 − Ξ̂

Popt

0

)







where the fact that the rows of MP , MCCA
1 and MCCA

2 are in `2 has been used. This concludes

the proof.

Remark V.4 It is our experience from the simulation experiments that the “optimized” PBSID

algorithm does not introduce significant improvements (see Figure 4) while it does increase (see

Section III-B) the computational complexity due to the solution of the constrained least squares

problem. See Appendix B for details.

However this algorithm can be implemented with a much lower computational complexity

as described in [12]. The weighting step needed to find Ω̂Popt (see Appendix B) is however

necessary to obtain the inequality (50). ♦

VI. SIMULATION RESULTS

The simulation setup is as follows: we consider two systems to be identified (in innovation

form); the first is a first order ARX system

y(t)− 0.5y(t− 1) = u(t− 1) + e(t)

while the second is a first order ARMAX model

y(t)− 0.5y(t− 1) = u(t− 1) + e(t) + 0.5e(t− 1)

The input is either unit variance white noise or unit variance white noise passed through the

filter Hu(z)

Hu(z) =
z2 + 0.8z + 0.55

z2 − 0.5z + 0.9
;

September 27, 2006 DRAFT



28

Colored Input Spectrum
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Fig. 1. Colored input spectrum: absolute value.
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Fig. 2. EXAMPLE 1 (ARX of order 1): Asymptotic Variance (and its Monte Carlo estimate) vs. normalized frequency

(ω ∈ [0, π]) Solid with triangles (4) PEM, dashed with stars (∗): CCA, dotted with crosses (+):“predictor-based” algorithm

(PBSID), dotted with circles (o): Jansson’s algorithm, dotted: asymptotic variance for PBSID, solid: Cramér-Rao lower bound.

the input spectrum is plotted in Figure 1.

We report results concerning the asymptotic variance and the sample variance estimated over
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100 Monte Carlo runs (both multiplied by the number N = 1000 of data points used in each

experiment) of the deterministic transfer function F (z) = 1
z−0.5

(equal for the two examples);

the future and past horizons are chosen to be t − t0 = ν = 10. In Figure 4 (left plot) we also

report the results for ν = 1, t− t0 = 10. In Figure 4 we show the dependence of the asymptotic

variance as a function of the future horizon ν measured by the efficiency index:

Eff(ν) :=

∫ 2π

0
AsVar {F̂ν(jω)} dω∫ 2π

0
CRLB(jω) dω

(53)

where F̂ν(jω) is the PBSID-estimator of the transfer function F (z) = C(zI −A)−1B evaluated

at z = ejω when the future horizon is ν and CRLB(jω) is the Cramér-Rao lower bound as a

function of ω.
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Fig. 3. EXAMPLE 2 (ARMAX of order 1): Asymptotic Variance (and its Monte Carlo estimate) vs. normalized frequency

(ω ∈ [0, π]) Solid with triangles (4) PEM, dashed with stars (∗): CCA, dotted with crosses (+):“predictor-based” algorithm

(PBSID), dotted with circles (o): Jansson’s algorithm, dotted: asymptotic variance for PBSID, solid: Cramér-Rao lower bound.

Note that for the white input case (see Figures 2 and 3, left plots) both CCA and the predictor

based algorithm are indistinguishable from PEM; in fact all algorithms reach the Cramér-Rao

lower bound in the examples considered.

It is also remarkable that the sample variance estimated from the simulations (and its “theo-

retical” value computed using the formulas of [11]) reaches the Cramér-Rao lower bound also
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for colored inputs when the system is ARX (see Figure 2, right plot).

In the colored input case (see Figures 2 and 3, right plots and Figure 4) the results are

fundamentally different: CCA behaves significantly worse than PEM and PBSID. We also report

the asymptotic variance computed using the formulas which can be found in [11] (dotted line)

and the Cramér-Rao Lower Bound (CRLB, solid line).

The algorithm by Jansson [31] is always indistinguishable from PBSID, as predicted by the

results in [10].

It is interesting to observe that in this particular example and with colored inputs, the asymp-

totic variance of PBSID/PBSIDopt is close to the Cramér-Rao lower bound (even though it does

not reach it) for ν = n = 1 (see Figure 4). Note that this behavior departs sharply from what

happens to CCA with white inputs (and hence also to PBSID by theorem 4.1); in that case, in

fact, the asymptotic variance decreases monotonically as a function of ν (see [7]).

Note also (see Figure 4) that the modified version PBSIDopt behaves as PBSID in the example

considered.

VII. CONCLUSIONS

In this paper we have shown that the PBSID algorithm, introduced in [17] under the name

“whitening filter” algorithm, is asymptotically equivalent to CCA when measured inputs are

white or absent. Our analysis is supported by both the simulation results and the asymptotic

variance formulas computed in [11].

The significance of this result is strengthened by the fact that, as shown in [10], PBSID and

the SSARX algorithm in [31] are asymptotically equivalent.

We have also proposed a slightly modified version of PBSID which provably behaves always

better than CCA. We remind the reader that both PBSID and its “optimized” version PBSIDopt

are able to deal with feedback.

An important question which remains open concerns efficiency.

In [35] it is claimed that a procedure which is essentially equivalent to the SSARX algorithm

is efficient for general input signal. However in [35] the past and future horizons (see formula

(2) and the definitions before formula (9) in [35]) are assumed to be equal and, for consistency

reason, let to go to infinity. Computations based on the asymptotic variance (see Figure 4 right

plot for an example with t − t0 = ν = 10, but essentially unchanged results are obtained
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Colored Input ν = 1 Eff(ν) for colored inputs
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Fig. 4. EXAMPLE 3 (ARMAX of order 1). Left plot: asymptotic Variance (and its Monte Carlo estimate) vs. normalized

frequency (ω ∈ [0, π]) Solid with triangles (4) PEM, dashed with stars (∗): CCA, dotted with crosses (+):“predictor-based”

algorithm (PBSID), dotted with circles (o): PBSIDopt algorithm, dotted: asymptotic variance for PBSID, solid: Cramér-Rao

lower bound. Right plot: Index Eff(ν) (see (53)) as a function of ν

increasing t− t0 = ν) show that indeed that claim is not correct and instead efficiency is never

attained; note also that in this example the “optimal” future horizon is ν = 1 (see Figure 4 right

plot).

Therefore, we believe, the quest for an asymptotically efficient subspace procedure with inputs

is still open; also a methodology to optimally chose ν is missing.14

We hope the results of this paper have shed some light towards this direction.

Also the question of non-asymptotic relative performance (i.e. with “finite data”), which is of

primary importance for practical purposes, remains open and, in our opinion, deserves further

investigation. This is, we believe, one of the main open research directions in the area of subspace

identification.

14Remind that here t− t0 is supposed to go to infinity according to Assumption 2.1.

September 27, 2006 DRAFT



32

APPENDIX A: PROOFS

Proof of Proposition 3.1. Recall that, defining

Êi
t = Yt − Ê

[
Yt | X̂ i

t

]
,

the least square estimators Âi, B̂i, Ĉi, i = 1, 2 are obtained from

[
Âi B̂i K̂ i

]
:= X̂ i

t+1

[(
X̂ i

t

)>
U>

t

(
Êi

t

)>]







X̂ i
t

Ut

Êi
t




[(
X̂ i

t

)>
U>

t

(
Êi

t

)>]




−1

(A.54)

Ĉi := Yt

(
X̂ i

t

)> {
X̂ i

t

(
X̂ i

t

)>}−1

(A.55)

For simplicity of exposition we shall only deal with (A.55); using (11) and recalling that

X̂1
t
·
=X̂2

t means that there exists T̂N , limN→∞T̂N = I , so that X̂1
t = T̂NX̂2

t + oP (1/
√

N), we

have:

Ĉ1 =
Yt(X̂1

t )
>

N

[
X̂1

t (X̂1
t )
>

N

]−1

=
Yt(TN X̂2

t +oP (1/
√

N))>

N

{
(T̂N X̂2

t +oP (1/
√

N))(T̂N X̂2
t +oP (1/

√
N))>

N

}−1

;

Using the fact that, for instance, 1
N

∑N−1
i=0 yt+ioP (1/

√
N) = oP (1/

√
N) and recalling that,

given a positive definite matrix Σ, (Σ + oP (1/
√

N))−1 = Σ−1 + oP (1/
√

N), the last term can

be simplified to yield:

Ĉ1 =
Yt(X̂2

t )
>

N
T̂>

N

{
T̂N X̂1

t (X̂1
t )
>

T̂>N
N

}−1

+ oP (1/
√

N)

= Ĉ2T̂−1
N + oP (1/

√
N).

Similarly:
Â1 = T̂N Â2T̂−1

N + oP (1/
√

N)

B̂1 = T̂N B̂2 + oP (1/
√

N)

K̂1 = T̂NK̂2 + oP (1/
√

N)

can be proven to hold.

¥

Proof of Lemma 3.2. Denoting with ΠUn the orthogonal projector operator onto the column space

of Un, equation (16) can be rewritten as

Γ̂ν̄ := ŴCCAUnT̂ = ŴCCAUn

(
U>

n Un

)−1
U>

n Ŵ−1
CCAΓν̄ = ŴCCAΠUnŴ−1

CCAΓν̄ .
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Let WCCA be the a.s. limit of ŴCCA. It is well known that under mild conditions, e.g. ν̄ larger

than the system order, Assumption 2.1 and condition (5), the column space of ŴCCAUn = Γ̂ν̄T̂
−1

converges to the column space of Γν̄ (see for instance [19], Theorems 9 and 10). Therefore also

the column space of Un converges to the column space of W−1
CCAΓν̄ and hence ΠUnŴ−1

CCAΓν̄

converges to W−1
CCAΓν̄ from which Γ̂ν̄ = ŴCCAΠUnŴ−1

CCAΓν̄ converges to Γν̄ . ¥

Proof of Lemma 3.3. First note that, from the asymptotic variance analysis found for instance

in [7], [13], [11] WCCA appears only through the left inverse

Γ−L
ν̄ =

(
Γ>ν̄ W−>

CCAW−1
CCAΓν̄

)−1
Γ>ν̄ W−>

CCAW−1
CCA.

Let now W0 := (Hν̄(I⊗Λ)H>
ν̄ )1/2 and define R−1

0 := W−>
0 W−1

0 = (Hν̄(I⊗Λ)H>
ν̄ )−1; we shall

show that if WCCA (square invertible), is chosen such that R−1 := W−>
CCAW−1

CCA can be written

in the form R−1 = (R0 + Γν̄ΣΓ>ν̄ )−1 for some matrix Σ = Σ> ≥ 0, then

Γ−L
ν̄ :=

(
Γ>ν̄ W−>

CCAW−1
CCAΓν̄

)−1
Γ>ν̄ W−>

CCAW−1
CCA =

(
Γ>ν̄ W−>

0 W−1
0 Γν̄

)−1
Γ>ν̄ W−>

0 W−1
0 (A.56)

holds, where the right hand side does not depend on Σ; therefore different choices of Σ do not

change the asymptotic variance.

First, we use the matrix inversion lemma and rewrite R−1 = (R0 + Γν̄ΣΓ>ν̄ )−1 = R−1
0 +

R−1
0 Γν̄SΓ>ν̄ R−1

0 for a suitable matrix S (depending upon Σ).

Define now Γ0 := W−1
0 Γν̄ . Let us first rewrite Γ−L

ν̄ as

Γ−L
ν̄ =

(
Γ>0 (I + Γ0SΓ>0 )Γ0

)−1
Γ>0 (I + Γ0SΓ>0 )W−1

0

=
[
(I + Γ>0 Γ0S)Γ>0 Γ0

]−1
(I + Γ>0 Γ0S)Γ>0 W−1

0 .

Since Γ0Γ
>
0 and

(
Γ>0 (I + Γ0SΓ>0 )Γ0

)
are nonsingular, also (I+Γ>0 Γ0) is invertible from which

Γ−L
ν̄ =

(
Γ>0 Γ0

)−1
Γ>0 W−1

0 =
(
Γ>ν̄ W−>

0 W−1
0 Γν̄

)−1
Γ>ν̄ W−>

0 W−1
0 ,

which yields (A.56), concluding the proof15. ¥

Proof of Lemma 4.2.

15Thanks to an anonymous referee for a suggestion which have allowed to shorten the proof.
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First let us note that

Ê‖U[t,T ]

[
Yt+h | Z[t0,t)

]
=

= Ê‖U[t,T ]

[
Ê

[
Yt+h | Z[t0,t+h), U[t+h,T ]

] | Z[t0,t)

] (A.57)

To simplify notation let P := Z[t0,t+h) (past) and F := U[t+h,T ] (future). Under the assumption

that u(t) is white (or absent of course) the rows of U[t+h,T ] are asymptotically orthogonal to

the rows of Z[t0,t+h) and also to the rows of Yt+h; therefore, from the uniform convergence

of sample covariances (see for instance [27][Theorem 5.3.2]), it follows that Σ̂fp := FP>
N

and

Σ̂yf := Yt+hF>

N
satisfy:

∥∥∥Σ̂fp

∥∥∥
2

= O

(√
(t−t0)log(log N)

N

) ∥∥∥Σ̂yf

∥∥∥
2

= O

(√
log(log N)

N

)

which implies ∥∥∥Σ̂fp

∥∥∥
2

∥∥∥Σ̂fp

∥∥∥
2

= O
(
(t− t0)

log(log(N)
N

)
∥∥∥Σ̂yf

∥∥∥
2

∥∥∥Σ̂fp

∥∥∥
2

= O
(√

(t− t0)
log(log(N)

N

) (A.58)

Now we write the inner projection in (A.57) as follows

Ê
[
Yt+h | Z[t0,t+h), U[t+h,T ]

]
= Ê [Yt+h | P, F ]

= Ê‖P [Yt+h | F ] + Ê‖F [Yt+h | P ]
(A.59)

Recall now that, given matrices Σ1(N), ∆Σ1(N), Σ2(N), ∆Σ2(N) of appropriate dimensions16,

with ‖Σ1(N)‖2 = O(1), Σ2(N) a.s. invertible with bounded inverse
∥∥Σ−1

2 (N)
∥∥

2
= O(1), and

‖∆Σ1(N)‖2, ‖∆Σ2(N)‖2 infinitesimal (a.s.) as N →∞,

(Σ1(N) + ∆Σ1(N)) (Σ2(N) + ∆Σ2(N))−1 = Σ1(N)Σ−1
2 (N) + ∆Σ1(N)Σ−1

2 (N)+

−Σ1(N)Σ−1
2 (N)∆Σ2(N)Σ−1

2 (N)+

+o(‖∆Σ2(N)‖2)
(A.60)

holds.

Now we apply (A.60) to the oblique projection:

Ê‖F [Yt+h | P ] := Σ̂yp|f Σ̂
−1
pp|fP = (Σ̂yp − Σ̂yf Σ̂

−1
ff Σ̂fp)(Σ̂pp − Σ̂pf Σ̂

−1
ff Σ̂fp)−1P

with Σ1(N) := Σ̂yp, ∆Σ1(N) := −Σ̂yf Σ̂
−1
ff Σ̂fp, Σ2(N) := Σ̂pp and ∆Σ2(N) := −Σ̂pf Σ̂

−1
ff Σ̂fp.

16The dimensions may also be a function of N .
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Observe that the assumption Φz ≥ cI > 0, implies (uniformly in t − t0, see [26], [22])

that Σpp ≥ cI > 0 and therefore
∥∥Σ−1

pp

∥∥
2
≤

√
1/c < ∞. From the uniform convergence of

sample covariances (Theorem 5.3.2 in [27]),
∥∥∥Σ̂pp − Σpp

∥∥∥
2

= O

(
(t− t0)

√
log(log(N))

N

)
holds

and therefore Σ̂pp is a.s. invertible and
∥∥∥Σ̂−1

pp

∥∥∥
2

= O(1). With similar argument, which uses

the fact that the covariance E
[
y(t)z>(t− τ)

]
goes to zero exponentially as a function of the τ

(since |λmax(A)| < 1 and u white), one can show that
∥∥∥Σ̂yp

∥∥∥
2

= O(1).

Therefore we obtain

Ê‖F [Yt+h | P ] =
[
Σ̂ypΣ̂−1

pp − Σ̂yf Σ̂
−1
ff Σ̂fpΣ̂−1

pp + Σ̂yp(Σ̂−1
ppΣ̂pf Σ̂

−1
ff Σ̂fpΣ̂−1

pp)
]
P+

+o
(∥∥∥Σ̂pf Σ̂

−1
ff Σ̂fp

∥∥∥
2

)
P

.

Using (A.58),
∥∥∥Σ̂−1

pp

∥∥∥
2

= O(1),
∥∥∥Σ̂yp

∥∥∥
2

= O(1) it is now easy to verify that Ψ̃ := −Σ̂yf Σ̂
−1
ff Σ̂fpΣ̂−1

pp+

Σ̂yp(Σ̂−1
ppΣ̂pf Σ̂

−1
ff Σ̂fpΣ̂−1

pp) satisfies
∥∥∥Ψ̃

∥∥∥
2

= O
(
(t− t0)

log(log(N))
N

)
. Since the elements of P are

OP (1), it follows that the product Ψ̃P = OP

(
(t− t0)

2 log(log(N))
N

)
= oP (1/

√
N).

Using the last equation the oblique projection Ê‖F [Yt+h | P ] becomes, for the purpose of

asymptotic analysis

Ê‖F [Yt+h | P ]
·
=Σ̂ypΣ̂−1

ppP = Ê [Yt+h | P ] (A.61)

Similarly one can show that

Ê‖P [Yt+h | F ]
·
=(Σ̂yf − Σ̂ypΣ̂−1

ppΣ̂pf )Σ̂
−1
ff F (A.62)

Using (A.61) and (A.62) we obtain

Ê
[
Yt+h | Z[t0,t+h), U[t+h,T ]

] ·
= Ê

[
Yt+h | Z[t0,t+h)

]
+

+Θ̂U[t+h,T ]

for a suitable matrix Θ̂ which follows from (A.62). Next, observe that Ê
[
Yt+h | Z[t0,t+h)

]
can

be written in the form

Ê
[
Yt+h | Z[t0,t+h)

]
= Ŷ p

t+h +
h∑

i=1

Φ̂hiYt+h−i + Ψ̂hiUt+h−i (A.63)

for suitable matrix coefficients Ψ̂hi, Φ̂hi. Taking now the oblique projection Ê‖U[t,T ]

[· | Z[t0,t)

]

of both sides of (A.63) we obtain:

Ŷt+h = Ê‖U[t,T ]

[
Yt+h | Z[t0,t)

]
·
= Ê‖U[t,T ]

[
Ê

[
Yt+h | Z[t0,t+h)

] | Z[t0,t)

]

= Ŷ p
t+h +

∑h
i=1 Φ̂hiŶt+h−i

(A.64)
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where Ê‖U[t,T ]

[
Θ̂U[t+h,T ] | Z[t0,t)

]
= 0 has been used.

In matrix form this becomes:

Ŷ p
[t,T ]

·
=




I 0 . . . 0

−Φ̂11 I . . . 0
...

... . . . ...

−Φ̂ν̄,ν̄ −Φ̂ν̄,ν̄−1 . . . I




Ŷ[t,T ]

Since Ŷ p
[t,T ] represents a weighted version of Ŷ[t,T ] only the asymptotic value of this weight matters

as far as any system invariant is concerned. Therefore we need to study the limit limN→∞Φ̂ij :=

Φij . Recall that, according to Assumption 2.1, also t0 − t0 → ∞ when N → ∞ and therefore

Φhi are simply the coefficients of the (stationary) one step-ahead predictor. As already stated in

(29), it is a standard fact (see for instance [43], [27], [38]) that Φhi = CĀi−1K.

The fact that 


I 0 . . . 0

−CK I . . . 0
...

... . . . ...

−CĀν̄−2K −CĀν̄−3K . . . I




is the inverse of Hν̄ is a simple exercise and is left to the reader. ¥

Proof of Proposition 5.1. We prove now only the relation (39) regarding C̃
Popt

N , being those

related to Ã
Popt

N , B̃
Popt

N , K̃
Popt

N completely analogous.

First note that, from Lemma 3.4 ˆ̄Γ
Popt

ν̄ converges to Γ̄ν̄ and therefore
(

ˆ̄Γ
Popt

ν̄

)−L

Γ̄ν̄ converges

to the identity matrix.

Recall now that

(
ˆ̄Γ

Popt

ν̄

)−L




Ξ0

...

Ξν̄


 Z[t0,t)

·
=T

Popt

N Xt

and that the state estimator X̂
Popt

t , from (37), is of the form

X̂
Popt

t =
(

ˆ̄Γ
Popt

ν̄

)−L




Ξ̂
Popt

0

...

Ξ̂
Popt

ν̄


 Z[t0,t)
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Using also the definition of Ê
Popt

t in (38), and the fact that CXt
·
=Ξ0Z[t0,t), it follows that

Y
Popt

t = Ξ̂
Popt

0 Z[t0,t)

·
= C

Popt

N X̂
Popt

t + C
Popt

N (T
Popt

N Xt − X̂
Popt

t ) +
(
Ξ̂

Popt

0 − Ξ0

)
Z[t0,t)+

·
= C

Popt

N X̂
Popt

t − C
Popt

N

(
ˆ̄Γ

Popt

ν̄

)−L




Ξ̃
Popt

0

...

Ξ̃
Popt

ν̄


 Z[t0,t) + Ξ̃

Popt

0 Z[t0,t)

Therefore (recall that T
Popt

N converges to the identity matrix)

C̃
Popt

N
·
=


Ξ̃

Popt

0 − CΓ̄−L
ν̄




Ξ̃
Popt

0

...

Ξ̃
Popt

ν̄





 Z[t0,t)

(
X̂t

)> [
X̂tX̂t

]−1

(A.65)

Vectorizing equation (A.65) and substituting sample values with their a.s. limit, there exists

a matrix MC , so that

vec{C̃Popt

N } ·=MCΩ̃Popt . (A.66)

The fact that the rows of MC are in `2 follows from the exponential convergence to zero of the

predictor impulse response.

¥

Proof of Proposition 5.2.

First note that, from Lemma 3.2 Γ̂ν̄ converges to Γν̄ and therefore Γ̂−L
ν̄ Γν̄ converges to the

identity matrix.

We prove now only the relation (48) regarding C̃CCA
N , being those related to ÃCCA

N , B̃CCA
N ,

K̃CCA
N completely analogous.

First of all recall that the state estimator X̂CCA
t

X̂CCA
t = Γ̂−L

ν̄ Ŷ[t,T−1] = Γ̂−L
ν̄ WCCAW−1

CCAŶ[t,T−1]
·
=Γ̂−L

ν̄ WCCAW−1




Ξ̂CCA
0

...

Ξ̂CCA
ν̄


 Z[t0,t).

where the last (asymptotic) equality follows from (44).
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We also recall that, by definition of TCCA
N in (47) and the relation Γν̄ = Hν̄Γ̄ν̄ = WCCAW−1Γ̄ν̄ ,

Γ̂−L
ν̄ WCCAW−1




Ξ0

...

Ξν̄


 Z[t0,t)

·
=TCCA

N Xt

Let us define

Êt := Yt − E
[
Yt|Z[t0,t)

]
:= Yt − Ξ̂0Z[t0,t); (A.67)

the equation above defines also Ξ̂0 which is, in general, different from Ξ̂CCA
0 . Note also that Êt

is different from ÊCCA
t defined in (46). It follows that Yt = CXt + Et

·
=Ξ0Z[t0,t) + Et can also

be written in the form

Yt
·
= CCCA

N X̂CCA
t + CCCA

N (TCCA
N Xt − X̂CCA

t ) +
(
Ξ̂0 − Ξ0

)
Z[t0,t) + Êt

·
= CCCA

N X̂CCA
t − CCCA

N


Γ̂−L

ν̄ WCCAW−1




Ξ̃CCA
0

...

Ξ̃CCA
ν̄


 Z[t0,t)


 + Ξ̃0Z[t0,t) + Êt

Using the relation Γ̄ν̄ = H−1
ν̄ Γν̄ it is easy to prove that Γ̄−L

ν̄ W = Γ−L
ν̄ WCCA and therefore

Γ̂−L
ν̄ WCCA converges to Γ̄−L

ν̄ W .

Having this observation in mind, from orthogonality of the rows of Êt with those of X̂CCA
t ,

recalling that TCCA
N converges to the identity matrix, it follows that

C̃CCA
N

·
=


Ξ̃0 − CΓ̄−L

ν̄




Ξ̃CCA
0

...

Ξ̃CCA
ν̄





 Z[t0,t)X̂

>
t

[
X̂tX̂t

]−1

(A.68)

Using Ω̃PCCA = Ω̃Popt+(Ω̂PCCA−Ω̂Popt) and Ξ̃0 = Ξ̃
Popt

0 +(Ξ̂0−Ξ̂
Popt

0 ) it is clear that, vectorizing

equation (A.68) and substituting sample values with their a.s. limit, there exist matrices MC ,

MCCA
C1 and MCCA

C2 so that

vec{C̃CCA
N } ·=MCΩ̃Popt + MCCA

C1 (Ω̂PCCA − Ω̂Popt) + MCCA
C2 vec(Ξ̂0 − Ξ̂

Popt

0 )

where clearly, from (A.68), MC is the same as that in (A.66), which concludes the proof. As

before MCCA
C1 and MCCA

C2 have rows in `2 due to the exponential convergence to zero of the

predictor impulse response.

¥
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APPENDIX B: LEAST SQUARES WITH EQUALITY CONSTRAINTS.

Consider the least squares problem (33), which we rewrite here for convenience,

Y = SP ΩP + E + ∆Y (N) = SP ΩP + LEI + ∆Y (N) (B.69)

where ∆Y (N) = oP (1/
√

N); recall that the noise covariance Var {E} = R = L(I ⊗ Λ)L>,

where L has been defined in (36), is a singular matrix. The oP (1/
√

N) has the form

∆Y (N) :=
[
vec

(
CĀt−t0Xt0

)>
, vec

(
CĀt−t0+1Xt0

)>
, ..., vec

(
CĀt−t0+ν̄Xt0

)>]>
. (B.70)

The following Lemma shows that this term has a very special structure which allows to discard

it when studying the asymptotic distribution of the estimated parameters η>N Ω̂P := η>NzY .

Lemma 7.1: The term ∆Y (N) = oP (1/
√

N) in (B.69), (B.70) can be written as

∆Y (N) = SP Υo(1/
√

N) + L∆X(N) (B.71)

with ‖Υ‖2 = O(1) and γ>N∆X(N) = oP (1/
√

N) provided the column vector γN (of suitable

dimensions) satisfies ‖γN‖2 = O(1).

Proof: First of all note that ĀkXt0 = Xt0+k −
∑k

i=1 Āi−1KZt0+k−i. Therefore

CĀt−t0+kXt0 = CĀt−t0Xt0+k + CĀt−t0ΥkZ[t0,t+k)

for some matrix of coefficients Υk which satisfies ‖Υk‖2 = O(1) from the exponential decrease

of the terms Āi.

Therefore we decompose the vectorization in (B.70) in the two parts:
[
vec

(
CĀt−t0Xt0

)>
, vec

(
CĀt−t0Xt0+1

)>
, ..., vec

(
CĀt−t0Xt0+ν̄

)>]>
(B.72)

and

[
vec

(
CĀt−t0Υ0Z[t0,t)

)>
, vec

(
CĀt−t0Υ1Z[t0,t+1)

)>
, ..., vec

(
CĀt−t0Υν̄Z[t0,t+ν̄)

)>]>
. (B.73)

It is rather straightforward then to see that (B.72) can be written as

L




CĀt−t0xt0

CĀt−t0xt0+1

...

CĀt−t0xt0+N+ν̄−1




= L∆X(N) (B.74)
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while (B.73) as

SP




vec
(
CĀt−t0Υ0

)

vec
(
CĀt−t0Υ1

)
...

vec
(
CĀt−t0Υν̄

)




= SP Υo(1/
√

N) (B.75)

with obvious meaning of the symbols Υ and ∆X(N); also ‖Υ‖2 = O(1) holds.

Note also that, due to Assumption 2.2, the covariance matrix Λxx := Var
{
[x>t0 , ..., x

>
t0+N+ν̄−1]

>}

satisfies ‖Λxx‖2 = O(1); therefore, since

‖Var {∆X(N)}‖2 =

∥∥∥∥Var
{[

(CĀt−t0xt0)
>, . . . , (CĀt−t0xt0+N+ν̄−1)

>
]>}∥∥∥∥

2

= o(1/
√

N)‖Λxx‖2 = o(1/
√

N)

also γ>N∆X(N) = oP (1/
√

N) holds true for all column vectors γN (of suitable dimensions)

satisfying ‖γN‖2 = O(1).

Using (B.70) the original least squares problem (B.69) can be written as

Y = SP
(
ΩP + Υo(1/

√
N)

)
+ L (EI + ∆X(N)) . (B.76)

The noise term L (EI + ∆X(N)) has a covariance which can be written in the form Ro =

L
[
(I ⊗ Λ) + o(1/

√
N)Σ̃

]
L; using the structure of EI and ∆X(N), (B.74) and Assumption 2.2,

it follows also that ‖Σ̃‖2 = O(1).

We are now ready to derive the optimal (asymptotically BLUE) of η>NΩP . It is easy to

see (using for instance, formula (C4.3.3) in [43]) that the asymptotically BLUE is given by17

η>N Ω̂Popt := η>Nz
Ro
optY with

zRo
opt =

[
(SP )>

(
Ro + SP (SP )>

)†
SP

]−1

(SP )>
(
Ro + SP (SP )>

)†
. (B.77)

For N large enough both (I ⊗ Λ) and (I ⊗ Λ) + o(1/
√

N)Σ̃ are non singular and bounded

away from zero. Under this assumption it is possible to see that, asymptotically,

zopt :=
[
(SP )>

(
R + SP (SP )>

)†
SP

]−1

(SP )>
(
R + SP (SP )>

)†
(B.78)

which is the Markov estimator computed as if there was no oP (1/
√

N) terms in (B.69), gives the

same distribution of the estimator. It is crucial here that the limit is computed with perturbations

to R which do not alter its column space (nor its rank in the limit).

17† denotes the Moore-Penroose pseudoinverse.
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Note also that, given any linear estimator zY such that zSP = I , the estimation error

η>N Ω̃P := η>N(zY − ΩP ) has the form

η>N Ω̃P = η>NΥo(1/
√

N) + η>NzE + η>NzL∆X(N).

The first term can be thought as a “bias”. However, since ‖Υ‖2 = O(1) also ‖η>NΥ‖2 = O(1)

and hence this bias term goes to zero faster than 1/
√

N . The last term is instead the contribution

due to the oP (1/
√

N) terms which are in the columns space of L.

Note that, provided ‖z‖2 = O(1) the vector γ>N := η>NzL, has uniformly bounded 2-

norm ‖γ>N‖2 = ‖η>NzL‖2 ≤ ‖η>N‖2‖z‖2‖L‖2 = O(1) and hence, according to Lemma 7.1,

η>NzL∆X(N) = γ>N∆X(N) = oP (1/
√

N), which can therefore be neglected. As we shall see

at the end of this Appendix the estimators we are interested in (namely Ω̂Popt = zoptY and

Ω̂PCCA = zCCAY ) satisfy the even stronger condition ‖zopt‖2 = O(1/
√

N) and ‖zCCA‖2 =

O(1/
√

N); therefore η>N Ω̃P ·
=η>NzE, providing a proof that, indeed, the oP (1/

√
N) in (B.69)

can be discarded both to the purpose of design and analysis of the estimator.

Remark B.5 As an indirect proof that zRo
opt and zopt give asymptotically equivalent estima-

tors note the following. With an argument similar to that used at the end of this Appendix

to show that ‖zopt‖2 = O(1/
√

N), also ‖zRo
opt‖2 = O(1/

√
N) can be proved. Therefore,

η>N(zRo
optY −ΩP )

·
=η>NzRo

optE and η>N(zoptY −ΩP )
·
=η>NzR

optE, which means that their asymptotic

properties do not depend on the oP (1/
√

N) terms. Since the first is asymptotically optimal

when the oP (1/
√

N) terms are accounted for while the second would be optimal if there were

no oP (1/
√

N) terms, both AsVar {√Nη>N(zRo
optY − ΩP )} ≤ AsVar {√Nη>N(zoptY − ΩP )}

and AsVar {√Nη>N(zoptY − ΩP )} ≤ AsVar {√Nη>N(zRo
optY − ΩP )} hold, proving that, indeed

AsVar {√Nη>N(zRo
optY − ΩP )} = AsVar {√Nη>N(zoptY − ΩP )}. ♦

Consider now the SVD

L =
[

UL UL⊥

]

 SL 0

0 0





 V >

L

V >
L⊥




We recall that L† = VLS−1
L U>

L ; note also that UL⊥ spans the left kernel of L, i.e. U>
L⊥L = 0.

Then define

YL := (I ⊗ Λ)−1/2L†Y = (I ⊗ Λ)−1/2L†SP ΩP + (I ⊗ Λ)−1/2L†E = SP
L ΩP + EL

which now has a full rank noise term EL, Var {EL} = I .
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Finally, observe that Y = L[y>t , y>t+1, ..., y
>
T+N−1]

> = LYI , which implies that also U>
L⊥Y = 0.

It follows that

U>
L⊥Y = U>

L⊥SP ΩP + U>
L⊥E = SP

L⊥ΩP = 0

where SP
L⊥ := U>

L⊥SP and U>
L⊥L = 0 has been used. Therefore (B.69) can be converted into a

least squares problem with equality constraints:




YL = SP
L ΩP + EL

s.t. 0 = SP
L⊥ΩP

(B.79)

Let dΩ denote the number of parameters in ΩP . The matrix SP
L⊥ has dimension (N−1)ν̄m×dΩ.

For N “large” SP
L⊥ has more rows than columns; let us denote with r⊥S the rank of SP

L⊥ . Of

course18 r⊥S ≤ dΩ. Let Ū>
L⊥ be a selection of r⊥S rows of U>

L⊥ so that the rows of S̄P
L⊥ := Ū>

L⊥SP

form a basis of the row space of SP
L⊥ . Clearly the constraints 0 = SP

L⊥ΩP and 0 = S̄P
L⊥ΩP are

equivalent since the rows of SP
L⊥ are linear combinations of the rows of S̄P

L⊥; note in fact that

0 = S̄P
L⊥ΩP implies also that 0 = v>ΩP for any (row) vector v> which is in the row span of

S̄P
L⊥ . Therefore we rewrite the constrained least squares problem (B.79) as:





YL = SP
L ΩP + EL

s.t. 0 = S̄P
L⊥ΩP

(B.80)

Consider now the QR-decomposition [24]

S̄P
L⊥ = R̄>Q> =

[
R̄>

1 0
]

 Q>

1

Q>
2




with R̄1 square (r⊥S × r⊥S ) invertible. It is easy to show that, ∀ηN satisfying Assumption 2.3,

the asymptotically best linear unbiased estimator (Asymptotically BLUE) of η>NΩP is given by19

η>N Ω̂Popt where

Ω̂Popt = Q2

(
SP

L Q2

)†
YL (B.81)

where (·)† denotes Moore-Penrose pseudoinverse [24]. Observe that, being Q2 orthonormal,

the conditioning of the problem depends on the matrix SP
L Q2, i.e. to SP

L “restricted to” the

18Using the structure of the matrices L and SP it is possible to check that, indeed, dΩ − r⊥S = m(t− t0)(m + p) > 0. For

reasons of space it is not possible to report the details here, see [12].
19See, e.g., [43] Remark 3, page 70, for the case in which ΩP has dimensions not depending on N .
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orthogonal complement of the “constraint matrix” S̄P
L⊥ . Note that20 the matrix SP

L could be

collinear (or almost collinear); however from


 U>

L⊥

(I ⊗ Λ)−1/2L†


 SP

[
Q1 Q2

]
=


 SP

L⊥

SP
L




[
Q1 Q2

]
=


 R>

1 0

SP
L Q1 SP

L Q2


 , (B.82)

in (B.82) we have used the fact that the rows of SP
L⊥ are linear combinations of the rows of

S̄P
L⊥ , so that SP

L⊥Q> = [R>
1 0].

It is immediate to see that the condition number of SP
L Q2 is smaller than that of


 U>

L⊥

(I ⊗ Λ)−1/2L†


 SP =


 I 0

0 (I ⊗ Λ)−1/2V >
L S−1

L





 U>

L⊥

U>
L


SP , (B.83)

which guarantees that indeed the constrained problem is well-posed if the original problem is

so.

Note that the “optimal” estimator Ω̂Popt is of the form Ω̂Popt = zoptY with

zopt = Q2

(
SP

L Q2

)†
(I ⊗ Λ)−1/2VLS−1

L U>
L . (B.84)

We now need to verify that indeed ‖zopt‖2 = O(1/
√

N) holds true. From (B.84) it follows that

‖zopt‖2 ≤
∥∥∥
(
SP

L Q2

)†∥∥∥
2

∥∥Λ−1/2
∥∥

2

∥∥S−1
L

∥∥
2
. (B.85)

First note that
∥∥Λ−1/2

∥∥
2

= O(1) since Λ is the (estimated) noise covariance. The fact that
∥∥S−1

L

∥∥
2

= O(1) follows directly from the structure of the matrix L.

Using now equations (B.82) and (B.83), σmin

(
SP

L Q2

) ≥ min
(
1, 1/

√‖Λ‖2

)
σmin

(
SP

)
; since

‖Λ‖2 = O(1).

Using now (34) it is immediate to see that (SP )>(SP )
N

is a block diagonal matrix with block

diagonal elements
Z[t0,t+k]Z

>
[t0,t+k]

N
⊗ I; from Assumption 2.2 and the uniform convergence of

sample covariances (see [26] and [27]), σ−1
min

[
(SP )>SP

N

]−1

= O(1) which implies σ−1
min

[
SP

]
=

O(1/
√

N).

It follows that
∥∥∥
(
SP

L Q2

)†∥∥∥
2

= σ−1
min

(
SP

L Q2

)
= O(1/

√
N), which, inserted in (B.85) gives

the desired result ‖zopt‖2 = O(1/
√

N). With a similar calculation we could also show that in

Ω̂PCCA := zCCAY , ‖zCCA‖2 = O(1/
√

N).

20As an anonymous reviewer has pointed out.
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